Seven Test

I made a new test set called "sevens", taking the lead from enwik7, the size of each file is 10 MB (10^7).

The goal here is not to show the total or who does best overall (that relies on how you weight each type of file and whether you think this selection is representative of the occurance ratios in your data), rather to show how each compressor does on different types of data, to highlight their different strengths.

Showing compression factor (eg. N:1 , higher is better) :

run details :

ZStd is 0.5.1 at level 21 (optimal)
LZMA is 7z -mx9 -m0=lzma:d24
Brotli is bro.exe by Sportman --quality 9 --window 24 (*)
Oodle is v2.13 at -z6 (Optimal2)

All competitors run via their provided exe

Some takeaways :

Binary structured data is really where the other compressors leave a lot of room to beat them. ("granny" and "records"). The difference in sizes on all the other files is pretty meh.

BitKnit does its special thang on granny - close to LZNA but 2X faster to decode (and ~ 6X faster than LZMA). Really super space-speed. BitKnit drops down to more like LZHLW levels on the non-record files (LZNA/LZMA has a small edge on them).

I was really surprised by ZStd vs Brotli. I actually went back and double checked by CSV to make sure I hadn't switched the columns by accident. In particular - Brotli does poorly on enwik7 (huh!?) but it does pretty well on "granny", and surprisingly ZStd does quite poorly on "granny" & "records". Not what I expected at all. Brotli is surprising poor on text/web and surprisingly good on binary record data.

LZHLW is still an excellent choice after all these years.

(* = Brotli quality 10 takes an order of magnitude longer than any of the others. I got fed up with waiting for it. Oodle also has "super" modes at -z8 that aren't used here. (**))

(for concreteness : Brotli 11 does pretty well on granny7 ; (6.148:1 vs 4.634:1 at q9) but it runs at 68 kb/s (!!) (and still not LZMA-level compression))

(** = I used to show results in benchmarks that required really slow encoders (for example the old LZNIB optimal "super parse" was hella slow); that can result in very small sizes and great decode speed, but it's a form of cheating. Encoders slower than 1 mb/s just won't be used, they're too slow, so it's reporting a result that real users won't actually see, and that's BS. I'm trying to be more legit about this now for my own stuff. Slow encoders are still interesting for research purposes because they show what should be possible, so you can try to get that result back in a faster way. (this in fact happened with LZNIB and is a Big Deal))

No comments:

old rants