6/20/2010

06-20-10 - Searching my PNG-alike

Okay so stealing some ideas from pngcrush let's check out the search space. I decide I'm going to examine various filters, Loco or no loco, LZ min match len, and LZ compress "level" (level = how hard it looks for matches).

Here are the results for my PNG-alike with the modes :

0 = no filter
Loco = no filter (in loco space)
Normal = select a single DPCM filter for the whole image
N+L = Normal in LOCO space
Adaptive = per row best DPCM filter
A+L = you get it by now

The left six columns are these modes with default LZ parameters (Fast match, min match len = 4). The right six columns are the same modes with LZ parameters optimized for each mode.

name 0 Loco Normal N+L Adaptive A+L optimized LZs 0 Loco Normal N+L Adaptive A+L
ryg_t.yello.01.bmp 458255 435875 423327 427031 438946 431678 372607 359799 392963 395327 415370 401618
ryg_t.train.03.bmp 56455 55483 69635 76211 68022 67678 36399 35195 31803 40155 37582 36638
ryg_t.sewers.01.bmp 599803 610463 452287 452583 466154 452834 593935 593759 421779 420091 443786 421166
ryg_t.font.01.bmp 42239 32207 38855 38855 53070 36746 33119 26911 35383 35383 40998 33798
ryg_t.envi.colored03.bmp 297631 309347 150183 165803 142658 157046 265755 278103 102487 114923 95394 109022
ryg_t.envi.colored02.bmp 109179 112623 100687 113867 89178 98374 90039 93535 62139 68027 54662 57514
ryg_t.concrete.cracked.01.bmp 481115 407759 355575 356911 408054 361602 384795 353235 299963 301907 342810 310342
ryg_t.bricks.05.bmp 551475 485271 418907 417655 492622 418406 469063 448279 372195 370459 429066 373310
ryg_t.bricks.02.bmp 665315 632623 482367 481347 538670 483106 590319 577699 455431 455203 522158 455426
ryg_t.aircondition.01.bmp 41635 29759 26011 26011 32866 25738 29023 25103 20547 20547 23946 20522
ryg_t.2d.pn02.bmp 25075 26539 28303 29259 28046 28974 22147 22723 25915 26179 26194 25790
kodak_24.bmp 826797 771829 640137 634141 726892 633308 723681 712285 567693 558085 684060 559564
kodak_23.bmp 835449 783941 576481 569981 608476 565172 724641 712001 481577 478041 551292 479240
kodak_22.bmp 898101 879949 655461 651213 722096 651000 803429 804073 577433 571301 689664 574252
kodak_21.bmp 781077 708861 617565 629401 705608 618424 647881 633069 549865 549025 665724 545584
kodak_20.bmp 609705 561957 495509 500161 537692 494484 501293 490849 434865 431745 506592 429556
kodak_19.bmp 822045 733053 630793 624897 697020 619064 673953 658345 550669 541845 660444 541424
kodak_18.bmp 941565 912081 691161 692425 789736 693804 850705 848353 618961 619949 764004 622628
kodak_17.bmp 758089 678233 597225 592941 660016 590292 617097 606045 507169 504961 610092 508672
kodak_16.bmp 650557 587537 543001 543001 607916 545244 522829 511833 466277 466277 536280 468136
kodak_15.bmp 759109 697257 595353 590321 648656 586324 643385 628481 511193 504213 593304 506728
kodak_14.bmp 891629 793553 661505 657357 745816 649928 749085 731569 584645 580301 707596 581520
kodak_13.bmp 997161 891637 729425 730901 878212 729580 853557 829057 677041 678613 802224 680196
kodak_12.bmp 672361 602825 545921 562749 606004 549292 539305 526793 465297 472693 539532 467088
kodak_11.bmp 758197 691697 604869 597125 665364 587264 639537 625145 523649 512685 608388 510200
kodak_10.bmp 747121 681213 592637 589561 635972 578888 625961 611553 504573 499753 576284 497400
kodak_09.bmp 688365 629429 587233 583245 627916 571652 565449 562329 501377 495637 567772 491896
kodak_08.bmp 1001257 882153 686961 684177 792916 684056 860269 825757 615657 610505 766620 610524
kodak_07.bmp 709829 673917 568649 563561 616820 561636 605177 600157 480705 473233 551136 473500
kodak_06.bmp 779709 694229 600145 600145 687824 601564 642525 626449 534037 534037 637180 534804
kodak_05.bmp 962357 873793 700581 695257 810688 694828 845905 823025 633581 623341 783400 624368
kodak_04.bmp 813869 729865 613241 606849 672176 607280 677345 660057 531533 522061 622904 528064
kodak_03.bmp 639809 586873 522049 542681 581880 527856 519549 510309 437765 452965 511900 443948
kodak_02.bmp 729069 649709 603853 591781 654408 585916 598913 584941 515437 502941 602364 500964
kodak_01.bmp 872669 747333 661481 655597 772808 653388 699945 682005 593001 582389 689436 586328
bragzone_TULIPS.bmp 1032589 1021309 646905 652213 701508 652128 966881 969913 565997 571377 662504 570796
bragzone_SERRANO.bmp 150142 151706 169982 169302 173229 175217 103462 103566 139306 139074 142609 143457
bragzone_SAIL.bmp 983473 941993 686013 686117 795152 686204 892301 887097 613845 609953 762420 610008
bragzone_PEPPERS.bmp 694247 679795 424603 423679 451006 424262 655987 650771 369291 366611 416426 368106
bragzone_MONARCH.bmp 887917 868533 600373 598985 654864 598976 810325 805725 507937 508085 598348 508096
bragzone_LENA.bmp 737803 733251 493703 498299 498274 502150 710215 704763 467103 475179 471586 477638
bragzone_FRYMIRE.bmp 342667 344807 419859 420811 420506 419026 241899 242355 335063 336859 335990 335894
bragzone_clegg.bmp 760493 799717 525077 541329 523580 536244 557529 571413 445897 468265 444736 465376

One important note :

The "Normal" filters include the option to do a post-filter Loco conversion. This is different than the "loco space" option in the modes above. Let me elaborate. "Loco" in the modes listed above means transform the image into Loco colorspace, and then proceed with filtering and LZ. Loco built into a filter mode means, on each pixel do the filter delta, then do loco conversion. This can be integrated directly into the DPCM pixel delta code, so it's just considered a filter type. In particular, in "loco space", then the N,W,NW neighbors are already in loco colorspace. When loco is part of the filter, the neighbors are in RGB space and the delta is converted after the fact. If everything was linear, these would be equivalent.

Okay, what do we see?

It's very surprising to me how much LZ optimization helps. In particular it surprises me that making the LZ search *worse* (by turning down compression "level") helps a lot; as does increasing match len; on natural images a min match len around 8 or 10 is usually best. (or even more, I forbid a min match len > 10 because it starts to hurt decode speed).

Well we were hoping that we could pick the mode based on the default LZ parameters, and then just optimize the LZ parameters for that one mode. It is often the case the the best mode after optimization is the same as the best mode before optimization, but not always. When it is not the case, it is usually a small mistake. However, there is one case where it's a very bad mistake - on ryg_t.yello.01.bmp you would make output of 393k instead of 360k.

Natural images are the easiest; for them you can pretty much just pick A+L (or N+L) and you're very close to best if you didn't get the best. Synthetic images are harder, they are very sensitive to the exact mode.

We can also say that no filter + loco is almost always wrong, except for that same annoying one case. Unfortunately I don't see any heuristic that can detect when 0+loco needs to be checked. Similarly for adaptive + noloco.

Obviously there's a fundamental problem when the initial sizes are very close together, you can't really differentiate between the modes. When the sizes are very far apart then it is a reliable guess.

Let me briefly note things I could be searching that I'm not :

Rearranging pixels in various ways, eg. RGBRGB -> RRRGGGBB , or to whole planes; interleaving lines, different scan orders, etc. etc.

LSQR fits for predictors. This doesn't hurt decode speed a ton so it would fit in my design spec, I'm just getting sick of wasting my time on this so I'm not bothering with it.

Predictors on different regions instead of per row. eg. a predictor type per 16x16 tile or something.

Anything that hurts decode speed, eg. bigger predictors, adaptive predictors, non-LZ coder, etc.

Oh I'm also not looking at any pixel format conversions; I assume the client has put it in the pixel format they want and won't change it. Obviously some of the PNG optimizers can win by palettizing when not many colors are actually used, and of course there are lots of other pixel formats that might help, blah blah.

Oh while I'm at it, I should also note that my LZ is actually kind of crippled for this comparison. I divide the data stream into 256k chunks and compress them completely independently (no LZ window across the chunk boundary). This lets me seek on compressed data and decompress portions of it independently, but it is quite a bad penalty.

No comments:

Post a Comment